European Girls” Mathematical Olympiad 2012—Day 2 Solutions

Problem 5. The numbers p and ¢ are prime and satisfy

4 qg+1 2n
+ =
p+1 q n+2

for some positive integer n. Find all possible values of ¢ — p.
Origin. Luxembourg (Pierre Haas).

Solution 1 (submitter). Rearranging the equation, 2gn(p + 1) = (n 4+ 2)(2pg + p + ¢ + 1). The left hand
side is even, so either n+ 2 or p+ ¢ + 1 is even, so either p = 2 or ¢ = 2 since p and ¢ are prime, or n is even.

If p=2 6gn = (n+ 2)(5¢ + 3), so (¢ — 3)(n — 10) = 36. Considering the divisors of 36 for which ¢ is
prime, we find the possible solutions (p, ¢,n) in this case are (2,5,28) and (2,7,19) (both of which satisfy the
equation).

Ifg=24n(p+1) = (n+2)5p+3), son =pn+ 10p + 6, a contradiction since n < pn, so there is no
solution with ¢ = 2.

Finally, suppose that n = 2k is even. We may suppose also that p and ¢ are odd primes. The equation
becomes 2kq(p + 1) = (k+ 1)(2pg + p+ ¢ + 1). The left hand side is even and 2pg+p+ ¢+ 1 is odd, so k + 1
is even, so k = 2¢ + 1 is odd. We now have

qp+1)(20+1)=(L+1)2pg+p+q+1)

or equivalently
tglp+1) = L+ 1)(pg+p+1).

Note that ¢ | p¢g + p + 1 if and only if ¢ | p + 1. Furthermore, because (p,p + 1) = 1 and ¢ is prime,
(p+1L,pg+p+1)=(p+1,pq) =(p+1,q) >1ifand only if ¢ | p+ 1.

Since (¢, + 1), we see that, if ¢ { p+ 1, then ¢ = pg+p+ 1l and £+ 1 = g(p+1),s0 ¢ = p+ 2
(and (p,p + 2,2(2p? + 6p + 3)) satisfies the original equation). In the contrary case, suppose p + 1 = r¢, so
Lp+1)=({+1)(p+r), a contradiction since f <+ 1 and p+1<p+r.

Thus the possible values of ¢ — p are 2, 3 and 5.

Solution 2 (PSC). Subtracting 2 and multiplying by —1, the condition is equivalent to
1 1 4

p+1 B g n+2

Thus ¢ > p+ 1. Rearranging,
4(p+1)q
n+2

The expression on the right is a positive integer, and g must cancel into n + 2 else ¢ would divide p+ 1 < gq.
Let (n+2)/q = u a positive integer.
Now

g—p—1=

4p+1
o1 i+

SO
ug—ulp+1)=4(p+1)

so p+ 1 divides ug. However, ¢ is prime and p+ 1 < ¢, therefore p+ 1 divides u. Let v be the integer u/(p+1).
Now

4
q—p:1+;€{2,3,5}.

All three cases can occur, where (p, ¢, n) is (3,5, 78), (2,5,28) or (2,7,19). Note that all pairs of twin primes
q = p + 2 yield solutions (p,p + 2,2(2p? + 6p + 3)).



Solution 3 (Coordinators). Subtract 2 from both sides to get

1 1 4

p+1 ¢ n+2

From this, since n is positive, we have that ¢ > p 4+ 1. Therefore ¢ and p + 1 are coprime, since ¢ is prime.
Group the terms on the LHS to get

q—-p—1 4

qp+1) n+2
Now (¢,q—p—1)=(¢,p+1)=1and (p+1,g—p—1) = (p+1,q) =1 so the fraction on the left is in lowest
terms. Therefore the numerator must divide the numerator on the right, which is 4. Since ¢ — p — 1 is positive,
it must be 1, 2 or 4, so that ¢ — p must be 2, 3 or 5. All of these can be attained, by (p,q,n) = (3,5,78),
(2,5,28) and (2,7,19) respectively.

Problem 6. There are infinitely many people registered on the social network Mugbook. Some pairs of
(different) users are registered as friends, but each person has only finitely many friends. Every user has at
least one friend. (Friendship is symmetric; that is, if A is a friend of B, then B is a friend of A.)

Each person is required to designate one of their friends as their best friend. If A designates B as her best
friend, then (unfortunately) it does not follow that B necessarily designates A as her best friend. Someone
designated as a best friend is called a 1-best friend. More generally, if n > 1 is a positive integer, then a user
is an n-best friend provided that they have been designated the best friend of someone who is an (n — 1)-best
friend. Someone who is a k-best friend for every positive integer k is called popular.

(a) Prove that every popular person is the best friend of a popular person.

(b) Show that if people can have infinitely many friends, then it is possible that a popular person is not the
best friend of a popular person.

Origin. Romania (Dan Schwarz) (rephrasing by Geoff Smith).

Remark. The original formulation of this problem was:
Given a function f: X — X, let us use the notations f°(X) := X, f**1(X) := f (f*(X)) for n > 0, and also
(X)) = ﬂ f™(X). Let us now impose on f that all its fibres f~1(y) := {z € X | f(z) = y}, for y € f(X),
n>0

are finite. Prove that f (f*(X)) = f“(X).

Solution 1 (submitter, adapted). For any person A, let fO(z) = x, let f(A) be A’s best friend, and define
fFHL(A) = f(f*(A)), so any person who is a k-best friend is f¥(A) for some person A; clearly a k-best friend
is also an ¢-best friend for all ¢ < k. Let X be a popular person. For each positive integer k, let z;, be a person
with f*¥(x,) = X. Because X only has finitely many friends, infinitely many of the f*~!(z;) (all of whom
designated X as best friend) must be the same person, who must be popular.

If people can have infinitely many friends, consider people X; for positive integers ¢ and F; ; for i < j positive
integers. X; designates X;11 as her best friend; F;; designates X; as her best friend; P; ; designates P,y ; as
her best friend if ¢ < j. Then all X; are popular, but X; is not the best friend of a popular person.

Solution 2 (submitter, adapted). For any set S of people, let f~1(S) be the set of people who designated
someone in S as their best friend. Since each person has only finitely many friends, if S is finite then f=1(S) is
finite.

Let X be a popular person and put Vo = {X} and Vj, = f~1(V,_1). All V; are finite and (since X is popular)
nonempty.

If any two sets Vi, V;, with 0 < i < j are not disjoint, define f*(z) for positive integers i as in Solution 1.
It follows 0 # f/(V; N'V;) C fA(Vi) N f4(V;) € Vo NVj_;, thus X € V;_;. But this means that f/=%(X) = X,
therefore fU=%(X) = X. Furthermore, if Y = f/=*=1(X), then f(Y) = X and f*U~-9(Y) =Y, so X is the
best friend of Y, who is popular.

If all sets V,, are disjoint, by Konig’s infinity lemma there exists an infinite sequence of (distinct) x;, ¢ > 0,
with x; € V; and x; = f(a;41) for all i. Now z1 is popular and her best friend is o = X.

If people can have infinitely many friends, proceed as in Solution 1.



Problem 7. Let ABC be an acute-angled triangle with circumcircle I' and orthocentre H. Let K be a point
of I" on the other side of BC' from A. Let L be the reflection of K in the line AB, and let M be the reflection
of K in the line BC. Let E be the second point of intersection of I' with the circumcircle of triangle BLM.
Show that the lines KH, EM and BC are concurrent. (The orthocentre of a triangle is the point on all three
of its altitudes.)

Origin. Luxembourg (Pierre Haas).

Solution 1 (submitter). Since the quadrilateral BM EL is cyclic, we have /ZBEM = /BLM. By construc-
tion, |BK| = |BL| = |BM]|, and so (using directed angles)

/BLM =90° — $/MBL = 90° — (180° — }/LBK — $/KBM)
= (34LBK + $ZKBM) —90° = (180° — £B) — 90° = 90° — B.

We see also that ZBEM = Z/BAH, and so the point N of intersection of EM and AH lies on I'.

Let X be the point of intersection of K H and BC, and let N’ be the point of intersection of M X and AH.
Since BC' bisects the segment KM by construction, the triangle KX M is isosceles; as AH|MK, HXN' is
isosceles. Since AH 1 BC, N’ is the reflection of H in the line BC. It is well known that this reflection
lies on I', and so N’ = N. Thus E, M, N and M, X, N’ all lie on the same line M N; that is, EM passes
through X.

Remark (submitter). The condition that K lies on the circumcircle of ABC' is not necessary; indeed, the
solution above does not use it. However, together with the fact that the triangle ABC' is acute-angled, this
condition implies that M is in the interior of I', which is necessary to avoid dealing with different configurations
including coincident points or the point of concurrence being at infinity.

Solution 2 (PSC). We work with directed angles. Let HK meet BC at X. Let M X meet AH at Hy on T
(where Hy is the reflection of H in BC'). Define E’ to be where Ha M meets I' (again). Our task is to show
that ZME'B=/MLB.

Observe that

/ME'B=/HAAB (angles in same segment)
Now
ZMLB =/HLB (Simson line, doubled)
=/BKH¢ (reflecting in the line AB)
=/BCH¢ (angles in the same segment)
= B“.



Problem 8. A word is a finite sequence of letters from some alphabet. A word is repetitive if it is a con-
catenation of at least two identical subwords (for example, ababab and abcabc are repetitive, but ababa and
aabb are not). Prove that if a word has the property that swapping any two adjacent letters makes the word
repetitive, then all its letters are identical. (Note that one may swap two adjacent identical letters, leaving a
word unchanged.)

Origin. Romania (Dan Schwarz).

Solution 1 (submitter). In this and the subsequent solutions we refer to a word with all letters identical as
constant.

Let us consider a nonconstant word W, of length |W| = w, and reach a contradiction. Since the word
W must contain two distinct adjacent letters, be it W = AabB with a # b, we may assume B = ¢C to be
non-empty, and so W = AabeC. By the proper transpositions we get the repetitive words W’ = AbacC = P¥/?,
of a period P of length p | w, 1 < p < w, and W” = AacbC = Q™/, of a period @ of length ¢ | w, 1 < g < w.
However, if a word UV is repetitive, then the word VU is also repetitive, of a same period length; therefore we
can work in the sequel with the repetitive words W = C'Abac, of a period P’ of length p, and W' = C Aacb,
of a period Q' of length q. The main idea now is that the common prefix of two repetitive words
cannot be too long.

Now, if a word ajas . ..a, = T%/! is repetitive, of a period T of length ¢ | w, 1 < t < w, then the word (and
any subword of it) is t-periodic, i.e. ap = ag4¢, for all 1 < k < w —t. Therefore the word C' A is both p-periodic
and g-periodic.

We now use the following classical result:

Wilf-Fine Theorem. Let p, q be positive integers, and let N be a word of length n, which is both p-periodic
and g-periodic. If n > p+ q — ged(p, q) then the word N is ged(p, q)-periodic (but this need not be the case if
instead n < p+q—ged(p,q) — 1).

By this we need |CA| < p+q—ged(p,q) —1 <p+q—2, hence w < p+ g+ 1, otherwise W} and W} would
be identical, absurd. Since p | w and 1 < p < w, we have 2p < w < p+ ¢+ 1, and so p < g + 1; similarly we
have ¢ <p+ 1.

If p=gq, then |CA| <p+p—ged(p,p) —1=p—1,50 2p < w < p+ 2, implying p < 2. But the three-letter
suffix acb is not periodic (not even for ¢ = a or ¢ = b), thus must be contained in @', forcing ¢ > 3, contradiction.

If p # g, then max(p,q) = min(p, q) + 1, so 3min(p,q) < w < 2min(p, q) + 2, hence min(p, q) < 2, forcing
min(p, ¢) = 2 and max(p, q) = 3; by an above observation, we may even say ¢ = 3 and p = 2, leading to ¢ = b. It
follows 6 = 3min(p, ¢) < w < 2min(p, q) + 2 = 6, forcing w = 6. This leads to CA = aba = abb, contradiction.

Solution 2 (submitter). We will take over from the solution above, just before invoking the Wilf-Fine
Theorem, by replacing it with a weaker lemma, also built upon a seminal result of combinatorics on words.

Lemma. Let p,q be positive integers, and let N be a word of length n, which is both p-periodic and q-
periodic. If n > p+ q then the word N is ged(p, q)-periodic.

Proof. Let us first prove that two not-null words U, V commute, i.e. UV = VU, if and only if there exists
a word W with |W| = ged(|U], |V]), such that U = WIV/IWI v = WIVI/IWI The “if” part being trivial, we
will prove the “only if” part, by strong induction on |U| 4 |V/|. Indeed, for the base step |U| + |V| = 2 we
have |U| = |V| = 1, and so clearly we can take W = U = V. Now, for |U| + |V| > 2, if |U| = |V] it follows
U =V, and so we can again take W = U = V. If not, assume without loss of generality |U| < |V|; then
V =UV’', so UUV' = UV'U, whence UV’ = V'U. Smce V| < [V, it follows 2 < |[U| + [V'| < |U| + |V|,
so by the induction hypothe51s there exists a suitable word W such that U = wlvl/ Wiy = wIVI/IWIE 5o
V =UV' = wIt/IWIw VW — AUV DIV = W IVIZIW

Now, assuming without loss of generality p < ¢, ¢ = kp+r, we have N = QPS, with |Q| = ¢, |P|=p. If r =0
all is clear; otherwise it follows we can write P = UV, Q = V(UV)*, with |V| = r, whence UV = VU, implying
PQ = QP, and so by the above result there will exist a word W of length ged(p, ¢) such that P = Wwr/ ged(p.a)
Q = W/ ed®a) therefore N is ged(p, ¢)-periodic. a

By this we need |CA| < p+¢—1, hence w < p+ ¢+ 2, otherwise by the previous lemma W/ and W/} would
be identical, absurd. Since p | w and 1 < p < w, we have 2p < w < p+¢+2, and so p < ¢+ 2; similarly we have
q < p+ 2. That implies max(p, ¢) < min(p,q) + 2. Now, from kmax(p,q) = w < p+ g+ 2 < 2max(p,q) + 2
we will have (k — 2) max(p,q) < 2; but max(p,q) < 2 is impossible, since the three-letter suffix acb is not
periodic (not even for ¢ = a or ¢ = b), thus must be contained in Q’, forcing ¢ > 3. Therefore k = 2, and so
w = 2max(p, q).



If max(p,q) = min(p, q), then w = 2p = 2q, for a quick contradiction.

If max(p,q) = min(p, ¢) + 1, it follows 3min(p, q) < w = 2max(p, q) = 2min(p, q) + 2, hence min(p, q) < 2,
forcing min(p, ¢) = 2 and max(p, q) = 3; by an above observation, we may even say ¢ = 3 and p = 2, leading to
¢ =b. Tt follows w = 2max(p, ¢) = 6, leading to C'A = aba = abb, contradiction.

If max(p,q) = min(p, q) + 2, it follows 3min(p,q) < w = 2max(p,q) = 2min(p, q) + 4, hence min(p, q) < 4.
From min(p,q) | w = 2max(p,q) then follows either min(p,q) = 2 and max(p,q) = 4, thus w = 8, clearly
contradictory, or else min(p, ¢) = 4 and max(p,q) = 6, thus w = 12, which also leads to contradiction, by just
a little deeper analysis.

Solution 3 (PSC). We define the distance between two words of the same length to be the number of positions
in which those two words have different letters. Any two words related by a transposition have distance 0 or 2;
any two words related by a sequence of two transpositions have distance 0, 2, 3 or 4.

Say the period of a repetitive word is the least k such that the word is the concatenation of two or more
identical subwords of length k. We use the following lemma on distances between repetitive words.

Lemma. Consider a pair of distinct, nonconstant repetitive words with periods ga and gb, where (a,b) =1
and a, b > 1, the first word is made up of kb repetitions of the subword of length ga and the second word is
made up of ka repetitions of the subword of length gb. These two words have distance at least max(ka, kb).

Proof. We may assume k = 1, since the distance between the words is k times the distance between their
initial subwords of length gab. Without loss of generality suppose b > a.

For each positive integer m, look at the subsequence in each word of letters in positions congruent to m
(mod g). Those subsequences (of length ab) have periods dividing a and b respectively. If they are equal, then
they are constant (since each letter is equal to those a and b before and after it, mod ab, and (a,b) = 1).
Because a > 1, there is some m for which the first subsequence is not constant, and so is unequal to the second
subsequence. Restrict attention to those subsequences.

We now have two distinct repetitive words, one (nonconstant) made up of b repetitions of a subword of
length a and one made up of a repetitions of a subword of length b. Looking at the first of those words, for any
1 < ¢ < b consider the letters in positions ¢, t +b, ..., t + (a — 1)b. These letters cover every position (mod a);
since the first word is not constant, the letters are not all equal, but the letters in the corresponding positions
in the second word are all equal. At least one of these letters in the first word must change to make them all
equal to those in the corresponding positions in the second word; repeating for each ¢, at least b letters must
change, so the words have distance at least b. (I

In the original problem, consider all the words (which we suppose to be repetitive) obtained by a transposition
of two adjacent letters from the original nonconstant word; say that word has length n. Suppose those words
include two distinct words with periods n/a and n/b; those words have distance at most 4. If a > 4 or b > 4,
we have a contradiction unless a | b or b | a. If a > 4 is the greatest number of repetitions in any of the words
(n/a is the smallest period), then unless all the numbers of repetitions divide each other there must be words
with 2 or 4 repetitions, words with 3 repetitions and all larger numbers of repetitions must divide each other
and be divisible by 6.

We now divide into three cases: all the numbers of repetitions may divide either other; or there may be
words with (multiples of) 2, 3 and 6 repetitions; or all words may have at most 4 repetitions, with at least one
word having 3 repetitions and at least one having 2 or 4 repetitions.

Case 1. Suppose all the numbers of repetitions divide each other. Let k be the least number of repetitions.
Consider the word as being divided into k blocks, each of ¢ letters; any transposition of two adjacent letters
leaves those blocks identical. If any two adjacent letters within a block are the same, then this means all the
blocks are already identical; since the word is not constant, the letters in the first block are not all identical,
so there are two distinct adjacent letters in the first block, and transposing them leaves it distinct from the
other blocks, a contradiction. Otherwise, all pairs of adjacent letters within each block are distinct; transposing
any adjacent pair within the first block leaves it identical to the second block. If the first block has more than
two letters, this is impossible since transposing the first two letters has a different result from transposing the
second two. So the blocks all have length 2; similarly, there are just two blocks, the arrangement is abba but
transposing the adjacent letters bb does not leave the word repetitive.

Case 2. Suppose some word resulting from a transposition is made of (a multiple of) 6 repetitions, some
of 3 repetitions and some of 2 repetitions (or 4 repetitions, counted as 2). Consider it as a sequence of 6 blocks,
each of length ¢. If the six blocks are already identical, then as the word is not constant, there are some
two distinct adjacent letters within the first block; transposing them leaves a result where the blocks form a



pattern BAAAAA, which cannot have two, three or six repetitions. So the six blocks are not already identical.
If a transposition within a block results in them being identical, the blocks form a pattern (without loss of
generality) BAAAAA, ABAAAA or AABAAA. In any of these cases, apply the same transposition (that
converts between A and B) to an A block adjacent to the B block, and the result cannot have two, three or six
repetitions. Finally, consider the case where some transposition between two adjacent blocks results in all six
blocks being identical. The patterns are BCAAAA, ABCAAA and AABCAA (and considering the letters at
the start and end of each block shows B # (). In all cases, transposing two adjacent distinct letters within an
A block produces a result that cannot have two, three or six repetitions.

Case 3. In the remaining case, all words have at most 4 repetitions, at least one has 3 repetitions and
at least one has 2 or 4 repetitions. For the purposes of this case we will think of 4-repetition words as being
2-repetition words. The number of each letter is a multiple of 6, so n > 12; consider the word as made of six
blocks of length /.

If the word is already repetitive with 2 repetitions, pattern ABCABC, any transposition between two
distinct letters leaves it no longer repetitive with two repetitions, so it must instead have three repetitions
after the transposition. If AB is not all one letter, transposing two adjacent letters within AB implies that
CA = BC,so A= B = (C, the word has pattern AAAAAA but transposing within the initial AA means it no
longer has 3 repetitions. This implies that AB is all one letter, but similarly BC must also be all one letter and
so the word is constant, a contradiction.

If the word is already repetitive with 3 repetitions, it has pattern ABABAB and any transposition leaves it
no longer having 3 repetitions, so having 2 repetitions instead. ABA is not made all of one letter (since the word
is not constant) and any transposition between two adjacent distinct letters therein turns it into BAB; such a
transposition affects at most two of the blocks, so A = B, the word has pattern AAAAAA and transposing two
adjacent distinct letters within the first half cannot leave it with two repetitions.

So the word is not already repetitive, and so no two adjacent letters are the same; all transpositions give
distinct strings. Consider transpositions of adjacent letters within the first four letters; three different words
result, of which at most one is periodic with two repetitions (it must be made of two copies of the second half
of the word) and at most one is periodic with three repetitions, a contradiction.



